This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 18 February 2013, At: 15:05

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

Crystal and Molecular Structure of a Cybotactic Nematic Compound bis(4'-n-Butoxybenzal—Chloro-1,4-Phenylinediamine

P. Mandal ^a , S. Paul ^a , H. Schenk ^b & K. Goubitz ^b

Version of record first published: 24 Sep 2006.

To cite this article: P. Mandal , S. Paul , H. Schenk & K. Goubitz (1992): Crystal and Molecular Structure of a Cybotactic Nematic Compound bis(4'-n-Butoxybenzal—Chloro-1,4-Phenylinediamine, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 210:1, 21-30

To link to this article: http://dx.doi.org/10.1080/10587259208030755

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^a Department of Physics, North Bengal University, Siliguri, India

^b Laboratory for Crystallography, University of Amsterdam, Amsterdam

Mol. Cryst. Liq. Cryst., 1992, Vol. 210, pp. 21-30 Reprints available directly from the publisher Photocopying permitted by license only © 1992 Gordon and Breach Science Publishers S.A. Printed in the United States of America

Crystal and Molecular Structure of a Cybotactic Nematic Compound bis-(4'-n-Butoxybenzal)-2-Chloro-1,4-Phenylinediamine

P. MANDAL and S. PAUL

Department of Physics, North Bengal University, Siliguri, India

and

H. SCHENK and K. GOUBITZ

Laboratory for Crystallography, University of Amsterdam, Amsterdam (Received June 19, 1991)

The crystal and molecular structure of a cybotactic nematic compound bis-(4'-n-butoxybenzal)-2-chloro-1,4-phenylinediamine (BOCP in short) has been reported. The crystals belong to monoclinic system with space group $P2_1/c$, a=36.693, b=14.940, c=6.1058 Å, $\beta=93.89^\circ$ and Z=4. The structure was determined by direct methods, with a final R-value of 0.049 ($R_W=0.070$) for 1979 observed reflections. The molecules are almost in their extended conformation. The molecules are inclined to the ab-plane, the planar aromatic core region being almost parallel to the ac-plane. Molecular packing in relation to the liquid crystal phase is discussed.

Keywords: liquid crystal, cybotactic nematic, x-ray study, crystal structure, structure-property relationship

INTRODUCTION

The hexyl, octyl, decyl and dodecyl members of the homologous series of bis-(4'-n-alkoxybenzal)-2-chloro-1,4-phenylinediamine have been studied by x-ray diffraction¹⁻⁴ to ascertain the molecular model of the cybotactic nematic phase which they exhibit. It is suggested that in this phase the molecules are arranged in 'cybotactic groups' such that the ends of the rod like molecules constitute more or less a well defined boundary plane which makes an angle with the average direction of the molecules in the group. It is expected that the packing of the molecules in the crystal lattice may explain the occurrence of cybotactic nematic phase. A survey of the knowledge of the solid-mesophase relationship has been given by Bryan.⁵ However this relationship is very complicated and any general conclusion should be treated with caution. Crystal structure of any cybotactic nematic precursor have

not been reported so far. We therefore undertook the structural study of the series and here we report the results on its eighth member (henceforth termed as BOCP).

From x-ray and texture studies we found⁴ the transition temperatures (°C) of BOCP as follows:

$$Cr \xleftarrow{60.0 - 61.7} S_{3.4 - 56.4} N_C \xleftarrow{178.1 - 178.5} I$$

EXPERIMENTAL

Needle shaped monoclinic cystals were obtained by slow evaporation from a solution of BOCP in acetone. Systematic absences of h0l reflections with 1 odd and of 0k0 reflections with k odd indicated that the space group is P2₁/c. The density measured by floatation technique (see Table I) revealed four molecules per unit cell. The cell parameters were refined by least-squares fit using accurate θ -measurements of 23 reflections with $50^{\circ} < 2\theta < 58^{\circ}$. 3352 unique reflections were measured on an Enraf Nonius CAD4 Diffractometer using graphite monochromated Cuk_{\alpha} radiation, 1979 of which have $1 \ge 2.5\sigma(I)$. Important crystallographic data are given in Table 1.

STRUCTURE DETERMINATION AND REFINEMENT

The structure was solved by Direct Methods using the program SAPI.⁶ Block diagonal least-squares refinement with 1979 observed reflections and with anistropic temperature factor for the non-hydrogen atoms and isotropic for the hydrogen atoms converged to R = 0.049 and $R_W = 0.070$ respectively. A weighting scheme $[W = (6.4 + F_{\rm obs} + 0.0068F_{\rm obs}^2)^{-1}]$ and extinction correction was applied. Atomic scattering factors were taken from Stewart et al⁷ for H and from Cromer and Waber⁸ for the others. All calculations were carried out with the X-RAY System.⁹

TABL	E	I	
Crystal	da	ita	

Molecular Formula	C36 H47 N2 C1 O2
Molecular weight	575.20 gm/mol
Crystal system	Monoclinic
Space group	$P2_1/c$
a = 36.693(3) Å	1
b = 14.940(1) Å	
c = 6.1058(6) Å	
$\beta = 93.89 (1)^{-6}$	
$V = 3339.4 \text{ Å}^3$	
$D_c = 1.14 \text{ gm/cm}^3$	
$D_{\rm m} = 1.15 \rm gm/cm^3$	
Z = 4	
$\lambda(\text{Cuk}_{\alpha}) = 1.5418 \text{ Å}$	
Number of independent reflections 3:	392
Number of observed reflections	1979 (I ≥ 2.5 σ (I))

For least-squares planes and inter-molecular short contact calculations local programs were used. Final positional and thermal parameters are given in Tables II–IV. The labelling of the atoms is shown in Figure 1. Bond lengths and angles are given in Tables V and VI.

RESULTS AND DISCUSSIONS

Molecular Geometry and Conformation

Molecular structures of a number of benzylideneanilines have been reported¹⁰ and a constant pattern of bond lengths and angles is found in the central region of

TABLE II

Fractional co-ordinates of the non-hydrogen atoms and equivalent isotropic thermal parameters

	=-			
	х	Y	Z	Ueq
C1(1)	0.23827(4)	-0.0041(1)	0.7711(3)	0.087(1)
C(1)	0.7499(2)	0.1572(5)	-0.302(1)	0.110(6)
C(2)	0.7122(2)	0.1174(4)	-0.3285(9)	0.074(4)
C(3)	0.6884(1)	0.1499(4)	-0.1533(9)	0.065(4)
C(4)	0.6499(1)	0.1124(3)	-0.1647(8)	0.059(3)
C(5)	0.6285(1)	0.1425(4)	0.0248(9)	0.066(4)
C(6)	0.5902(1)	0.1088(3)	0.0307(8)	0.058(3)
C(7)	0.5712(1)	0.1414(4)	0.2309(9)	0.065(4)
C(8)	0.5328(1)	0.1090(3)	0.2457(8)	0.056(3)
C(9)	0.4853(1)	0.1301(3)	0.4940(7)	0.050(3)
C(10)	0.4760(1)	0.1675(3)	0.6934(8)	0.055(3)
C(11)	0.4414(1)	0.1593(3)	0.7546(8)	0.056(3)
C(12)	0.4147(1)	0.1163(3)	0.6251(8)	0.054(3)
C(13)	0.4240(1)	0.0822(4)	0.4234(8)	0.065(4)
C(14)	0.4588(1)	0.0870(4)	0.3615(8)	0.063(3)
C(15)	0.3771(1)	0.1096(3)	0.6892(8)	0.060(3)
C(16)	0.3315(1)	0.1227(3)	0.9359(8)	0.055(3)
C(17)	0.3221(1)	0.1724(3)	1.1184(8)	0.059(3)
C(18)	0.2867(1)	0.1705(4)	1.1848(8)	0.061(3)
C(19)	0.2595(1)	0.1188(3)	1.0816(8)	0.055(3)
C(20)	0.2699(1)	0.0682(3)	0.9009(9)	0.061(3)
C(21)	0.3049(1)	0.0694(3)	0.8309(8)	0.062(3)
C(22)	0.2135(1)	0.1333(4)	1.3211(9)	0.065(4)
C(23)	0.1753(1)	0.1291(3)	1.3742(8)	0.057(3)
C(24)	0.1645(2)	0.1610(4)	1.5725(9)	0.071(4)
C(25)	0.1286(1)	0.1594(4)	1.6257(9)	0.070(4)
C(26)	0.1027(1)	0.1217(4)	1.4817(8)	0.063(3)
C(27)	0.1131(2)	0.0875(4)	1.2812(8)	0.076(4)
C(28)	0.1484(2)	0.0915(4)	1.2318(9)	0.074(4)
C(29)	0.0538(1)	0.1445(4)	1.7194(9)	0.070(4)
C(30)	0.0145(1)	0.1133(4)	1.7244(9)	0.067(4)
C(31)	-0.0028(1)	0.1418(4)	1.933(1)	0.072(4)
C(32)	-0.0414(1)	0.1106(4)	1.9435(9)	0.071(4)
C(33)	-0.0601(1)	0.1407(4)	2.145(1)	0.074(4)
C(34)	-0.0994(2)	0.1113(4)	2.154(1)	0.086(4)
C(35)	-0.1178(2)	0.1481(6)	2.348(1)	0.122(6)
C(36)	-0.1571(2)	0.1228(7)	2.352(2)	0.165(9)
N(1)	0.3677(1)	0.1303(3)	0.8773(7)	0.058(3)
N(2)	0.2226(1)	0.1145(3)	1.1314(7)	0.069(3)
0(1)	0.52076(9)	0.1433(2)	0.4494(5)	0.058(2)
0(2)	0.06620(9)	0.1143(3)	1.5146(6)	0.079(3)

TABLE III
Fractional co-ordinates and isotropic thermal parameters of the hydrogen atoms

Fractio	onal co-ordinates and	isotropic thermal	parameters of the hyd	rogen atoms
	Х	Y	Z	U
H(10)	0.494(1)	0.194(3)	0.773(7)	0.07(1)
H(11)	0.434(1)	0.190(3)	0.876(6)	0.05(1)
H(13)	0.404(1)	0.053(3)	0.333(7)	0.06(1)
H(14)	0.465(1)	0.067(3)	0.237(7)	0.08(2)
H(15)	0.360(1)	0.090(3)	0.586(6)	0.06(1)
H(17)	0.3465(8)	0.197(2)	1.222(5)	0.024(9)
H(18)	0.282(1)	0.212(3)	1.315(8)	0.09(2)
H(21)	0.309(1)	0.028(3)	0.713(7)	0.07(1)
H(22)	0.231(2)	0.147(4)	1.44(1)	0.13(2)
H(24)	0.182(1)	0.184(3)	1.668(7)	0.07(1)
H(25)	0.122(1)	0.185(3)	1.750(8)	0.09(2)
H(27)	0.094(1)	0.059(3)	1.200(6)	0.05(1)
H(28)	0.157(1)	0.066(3)	1.097(8)	0.09(2)
H(31)	0.702(1)	0.132(3)	0.004(7)	0.08(2)
H(32)	0.685(1)	0.215(3)	-0.161(7)	0.08(1)
H(41)	0.637(1)	0.129(3)	-0.302(7)	0.08(1)
H(42)	0.653(1)	0.046(3)	-0.169(6)	0.05(1)
н(51)	0.641(1)	0.131(3)	0.153(8)	0.09(2)
H(52)	0.630(1)	0.212(4)	0.046(9)	0.11(2)
H(61)	0.573(1)	0.130(2)	-0.099(6)	0.05(1)
H(62)	0.590(1)	0.042(2)	0.025(6)	0.05(1)
H(71)	0.588(1)	0.122(3)	0.371(7)	0.07(1)
H(72)	0.573(1)	0.207(3)	0.257(7)	0.08(2)
H(81)	0.517(1)	0.132(3)	0.121(8)	0.09(2)
H(82)	0.5312(9)	0.041(2)	0.248(6)	0.04(1)
H(101)	0.749(1)	0.229(4)	-0.315(8)	0.11(2)
H(102)	0.765(1)	0.140(4)	-0.134(9)	0.12(2)
H(103)	0.762(1)	0.145(3)	-0.417(8)	0.09(2)
H(201)	0.699(1)	0.133(3)	-0.478(7)	0.08(2)
H(202)	0.710(1)	0.049(3)	-0.329(7)	0.07(1)
H(291)	0.069(1)	0.115(3)	1.851(8)	0.09(2)
H(292)	0.054(1)	0.216(3)	1.733(8)	0.08(2)
H(301)	-0.001(1)	0.142(3)	1.597(7)	0.08(2)
H(302)	0.015(1)	0.044(3)	1.716(8)	0.10(2)
H(311) H(312)	0.015(1) -0.003(1)	0.122(3)	2.060(7)	0.07(1)
	-0.059(1)	0.208(3)	1.939(6)	0.06(1)
H(321) H(322)	-0.042(1)	0.132(3) 0.039(3)	1.821(8) 1.943(8)	0.08(2)
H(331)	-0.042(1)	0.115(3)	2.286(7)	0.08(2)
H(332)	-0.060(1)	0.207(3)	2.142(7)	0.08(2)
H(341)	-0.116(1)	0.125(4)	2.026(9)	0.07(1) 0.12(2)
H(341)	-0.102(1)	0.123(4)	2.026(9)	0.12(2)
H(351)	-0.103(2)	0.144(4)	2.49(1)	0.11(2)
H(352)	-0.103(2)	0.226(5)	2.33(1)	0.17(2)
H(361)	-0.171(2)	0.141(5)	2.33(1)	0.17(3)
H(362)	-0.171(2)	0.141(5)	2.31(1)	0.17(3)
H(363)	-0.167(2)	0.056(5)	2.46(1)	0.17(3)
	01101/61	0.130(3)	2.30(1)	0.1.(3)

these molecules. Intra-molecular steric repulsions cause the angles C—C—N and two C—C—N connected to two benzene rings to be enlarged from 120°, and the angles C—N—C and the other two C—C—N to be reduced. The observed bond lengths and angles conform to this pattern.

In the benzylidene rings the pattern of bond distances is similar to that found in p-[(p'-ethoxybenzylidene)amino] benzonitrile¹⁰ with marked shortening of C10–

TABLE IV
Anisotropic thermal parameters of the non-hydrogen atoms. The temperature factor is of the form $\exp[-2\pi^2 (U11.h^2.a^{*2} + U22.k^2.b^{*2} + U33.l^2.c^{*2} + 2U12.h.k.a^*.b^* + 2U13.h.l.a^*.c^* + 2U23.k.l.b^*.c^*)]$

C1				2U23.K.I.b*.	c*)]		
C(11) 0.085(5) 0.136(6) 0.113(6) -0.003(4) 0.037(4) -0.016(5) C(2) 0.074(4) 0.078(4) 0.071(4) -0.003(3) 0.017(3) -0.006(3) C(3) 0.067(4) 0.064(4) 0.066(4) 0.007(3) 0.018(3) 0.001(3) C(4) 0.064(3) 0.057(3) 0.058(3) 0.010(3) 0.007(3) -0.002(3) C(5) 0.057(3) 0.057(3) 0.063(3) 0.002(3) 0.001(3) -0.009(3) C(6) 0.053(3) 0.057(3) 0.063(3) -0.002(3) 0.007(3) -0.001(3) C(7) 0.067(4) 0.066(4) 0.063(3) -0.007(3) -0.001(3) -0.001(3) C(8) 0.061(3) 0.051(3) 0.055(3) -0.007(3) -0.002(3) -0.001(3) C(9) 0.54(3) 0.042(3) 0.055(3) -0.007(3) -0.002(3) -0.002(3) C(11) 0.069(3) 0.051(3) 0.054(3) -0.004(3) -0.006(3) C(11) 0.053(3) 0.051(3) </th <th>_</th> <th>Ų11</th> <th>U22</th> <th>U33</th> <th>U12</th> <th>U13</th> <th>U23</th>	_	Ų11	U22	U33	U12	U13	U23
C(2) 0.074 (4) 0.078 (4) 0.071 (4) -0.003 (3) 0.017 (3) -0.006 (3) C(3) 0.067 (4) 0.064 (4) 0.066 (4) 0.007 (3) 0.018 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.009 (3) 0.01 (3) 0.001 (3) 0.009 (3) 0.001 (3) -0.009 (3) 0.001 (3) -0.009 (3) 0.001 (3) -0.009 (3) 0.001 (3) -0.009 (3) 0.001 (3) -0.009 (3) 0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.001 (3) -0.002 (3) -0.002 (3) -0.001 (3) -0.002 (3) -0.001 (3) -0.002 (3) -0.001 (3) -0.002 (3) -0.001 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3) -0.002 (3)	C1(1)	0.0712(9)	0.107(1)	0.085(1)	-0.014(1)	0.0039(8)	-0.032(1)
C(3) 0.067 (4) 0.064 (4) 0.058 (3) 0.051 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.001 (3) 0.002 (3) 0.001 (3) 0.000 (3) 0.0		0.085(5)			-0.003(4)	0.037(4)	-0.016(5)
C(4) 0.064(3) 0.057(3) 0.058(3) 0.010(3) 0.007(3) -0.002(3) C(5) 0.057(3) 0.073(4) 0.068(4) -0.002(3) 0.001(3) -0.009(3) C(6) 0.053(3) 0.057(3) 0.063(3) 0.002(3) 0.0001(3) -0.003(3) C(7) 0.067(4) 0.066(4) 0.063(3) -0.006(3) 0.007(3) -0.001(3) C(8) 0.061(3) 0.051(3) 0.055(3) -0.007(3) -0.002(3) -0.002(3) C(9) 0.054(3) 0.048(3) 0.055(3) -0.003(3) -0.003(3) -0.002(3) C(10) 0.063(3) 0.048(3) 0.055(3) -0.003(3) -0.001(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) 0.003(3) -0.001(3) -0.004(3) C(11) 0.053(3) 0.058(3) 0.051(3) 0.001(3) -0.004(3) C(11) 0.056(3) 0.057(4) 0.053(3) -0.014(3) 0.006(3) -0.001(3) C(11) 0.066(3) 0.070	C(2)	0.074(4)	0.078(4)	0.071(4)	-0.003(3)	0.017(3)	-0.006(3)
C(5) 0.057(3) 0.073(4) 0.068(4) -0.002(3) 0.001(3) -0.009(3) C(6) 0.053(3) 0.057(3) 0.063(3) 0.002(3) 0.001(3) -0.003(3) C(7) 0.067(4) 0.066(4) 0.063(3) -0.007(3) -0.001(3) -0.001(3) C(8) 0.061(3) 0.051(3) 0.055(3) -0.007(3) -0.002(3) -0.002(3) C(9) 0.054(3) 0.048(3) 0.055(3) -0.003(3) -0.001(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) 0.003(3) -0.001(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) 0.003(3) -0.001(3) -0.006(3) C(11) 0.053(3) 0.051(3) 0.001(3) 0.006(3) -0.004(3) C(12) 0.053(3) 0.051(3) 0.001(3) 0.006(3) -0.004(3) C(12) 0.056(3) 0.070(4) 0.053(3) -0.004(3) 0.006(3) -0.004(3) C(14) 0.066(3) 0.077(4) 0.053	C(3)	0.067(4)	0.064(4)	0.066(4)	0.007(3)	0.018(3)	0.001(3)
$\begin{array}{c} \mathbf{c}(6) & 0.053(3) & 0.057(3) & 0.063(3) & 0.002(3) & 0.000(3) & -0.003(3) \\ \mathbf{c}(7) & 0.067(4) & 0.066(4) & 0.063(3) & -0.006(3) & 0.007(3) & -0.011(3) \\ \mathbf{c}(8) & 0.061(3) & 0.051(3) & 0.055(3) & -0.007(3) & -0.002(3) & -0.002(3) \\ \mathbf{c}(9) & 0.054(3) & 0.042(3) & 0.055(3) & 0.003(2) & 0.003(3) & 0.002(2) \\ \mathbf{c}(10) & 0.063(3) & 0.048(3) & 0.055(3) & -0.003(3) & -0.001(3) & -0.006(3) \\ \mathbf{c}(11) & 0.069(3) & 0.051(3) & 0.048(3) & 0.051(3) & -0.001(3) & -0.004(3) \\ \mathbf{c}(12) & 0.053(3) & 0.058(3) & 0.051(3) & 0.001(3) & 0.006(3) & -0.004(3) \\ \mathbf{c}(12) & 0.053(3) & 0.087(4) & 0.053(3) & -0.001(3) & 0.006(3) & -0.001(3) \\ \mathbf{c}(13) & 0.056(3) & 0.087(4) & 0.053(3) & -0.004(3) & 0.006(3) & -0.001(3) \\ \mathbf{c}(14) & 0.066(3) & 0.070(4) & 0.053(3) & -0.004(3) & 0.008(3) & -0.001(3) \\ \mathbf{c}(15) & 0.067(3) & 0.057(3) & 0.054(3) & 0.001(3) & -0.002(3) & -0.006(3) \\ \mathbf{c}(16) & 0.065(3) & 0.047(3) & 0.052(3) & 0.001(3) & -0.002(3) & -0.006(3) \\ \mathbf{c}(17) & 0.070(4) & 0.057(3) & 0.052(3) & 0.000(3) & 0.002(3) & -0.004(3) \\ \mathbf{c}(18) & 0.069(4) & 0.062(3) & 0.053(3) & -0.002(3) & 0.014(3) & 0.004(3) \\ \mathbf{c}(19) & 0.071(3) & 0.048(3) & 0.050(3) & 0.002(3) & 0.014(3) & 0.002(3) \\ \mathbf{c}(21) & 0.070(4) & 0.055(3) & 0.062(3) & -0.003(3) & -0.002(3) & -0.002(3) \\ \mathbf{c}(22) & 0.066(3) & 0.054(3) & 0.062(3) & -0.003(3) & -0.002(3) & -0.012(3) \\ \mathbf{c}(22) & 0.070(4) & 0.055(3) & 0.062(3) & 0.007(3) & 0.009(3) & -0.012(3) \\ \mathbf{c}(22) & 0.070(4) & 0.063(4) & 0.063(4) & -0.003(3) & 0.009(3) & -0.012(3) \\ \mathbf{c}(22) & 0.071(4) & 0.068(3) & 0.050(3) & 0.000(3) & 0.009(3) & -0.012(3) \\ \mathbf{c}(22) & 0.071(4) & 0.068(4) & 0.065(4) & -0.003(3) & 0.009(3) & -0.012(3) \\ \mathbf{c}(24) & 0.064(4) & 0.083(4) & 0.065(4) & -0.003(3) & 0.009(3) & -0.012(3) \\ \mathbf{c}(25) & 0.071(4) & 0.069(4) & 0.071(4) & -0.062(3) & -0.003(3) & 0.006(3) & -0.014(3) \\ \mathbf{c}(22) & 0.056(3) & 0.071(4) & 0.062(3) & -0.008(3) & 0.006(3) & -0.014(3) \\ \mathbf{c}(22) & 0.067(4) & 0.098(5) & 0.055(4) & -0.008(3) & 0.006(3) & -0.004(3) \\ \mathbf{c}(33) & 0.056(3) & 0.075(4) & 0.097(4) & 0.098(5) & 0.008(4$					0.010(3)	0.007(3)	-0.002(3)
C(7) 0.067(4) 0.066(4) 0.063(3) -0.006(3) 0.007(3) -0.011(3) C(8) 0.061(3) 0.051(3) 0.055(3) -0.007(3) -0.002(3) -0.002(3) C(9) 0.054(3) 0.042(3) 0.055(3) -0.003(3) -0.000(3) 0.002(2) C(10) 0.063(3) 0.048(3) 0.055(3) -0.003(3) -0.001(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) 0.003(3) -0.001(3) -0.004(3) C(12) 0.053(3) 0.058(3) 0.051(3) 0.001(3) 0.006(3) -0.004(3) C(13) 0.056(3) 0.087(4) 0.053(3) -0.014(3) 0.006(3) -0.001(3) C(14) 0.066(3) 0.070(4) 0.053(3) -0.004(3) 0.008(3) -0.009(3) C(15) 0.067(3) 0.057(3) 0.054(3) 0.001(3) 0.002(3) -0.002(3) -0.002(3) -0.002(3) -0.002(3) -0.004(3) C(16) 0.065(3) 0.047(3) 0.055(3) 0.002(3)						0.001(3)	-0.009(3)
C(8) 0.061(3) 0.051(3) 0.055(3) -0.007(3) -0.002(3) -0.002(3) C(9) 0.054(3) 0.042(3) 0.055(3) 0.003(2) 0.003(3) 0.002(2) C(10) 0.063(3) 0.048(3) 0.055(3) -0.003(3) 0.000(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) 10.003(3) -0.001(3) -0.004(3) C(12) 0.053(3) 0.058(3) 0.051(3) 0.001(3) 0.006(3) 0.004(3) C(14) 0.066(3) 0.070(4) 0.053(3) -0.004(3) 0.006(3) -0.001(3) C(15) 0.067(3) 0.057(3) 0.053(3) -0.004(3) 0.006(3) -0.006(3) C(16) 0.065(3) 0.077(3) 0.052(3) 0.001(3) -0.002(3) -0.006(3) C(16) 0.065(3) 0.047(3) 0.052(3) 0.001(3) 0.002(3) -0.004(3) C(16) 0.065(3) 0.053(3) 0.000(3) 0.002(3) -0.004(3) C(17) 0.070(4) 0.062(
C(9) 0.054(3) 0.042(3) 0.055(3) 0.003(2) 0.003(3) 0.0002(2) C(10) 0.063(3) 0.048(3) 0.055(3) -0.003(3) -0.001(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) -0.001(3) -0.001(3) -0.004(3) C(12) 0.055(3) 0.058(3) 0.051(3) 0.001(3) -0.006(3) -0.004(3) C(13) 0.056(3) 0.087(4) 0.053(3) -0.014(3) 0.006(3) -0.001(3) C(14) 0.066(3) 0.070(4) 0.053(3) -0.004(3) 0.008(3) -0.009(3) C(15) 0.067(3) 0.057(3) 0.054(3) 0.001(3) -0.002(3) -0.006(3) C(15) 0.067(3) 0.057(3) 0.052(3) 0.001(3) -0.002(3) -0.006(3) C(15) 0.070(4) 0.057(3) 0.052(3) 0.001(3) 0.002(3) 0.004(3) C(17) 0.070(4) 0.062(3) 0.053(3) 0.002(3) 0.013(3) 0.004(3) C(18) 0.06							
C(10) 0.063(3) 0.048(3) 0.055(3) -0.003(3) -0.000(3) -0.006(3) C(11) 0.069(3) 0.051(3) 0.048(3) 10.003(3) -0.001(3) -0.004(3) C(12) 0.053(3) 0.058(3) 0.051(3) 0.001(3) 0.006(3) 0.004(3) C(13) 0.056(3) 0.087(4) 0.053(3) -0.014(3) 0.006(3) -0.011(3) C(14) 0.066(3) 0.070(4) 0.053(3) -0.004(3) 0.008(3) -0.009(3) C(15) 0.067(3) 0.057(3) 0.054(3) 0.001(3) -0.002(3) -0.006(3) C(16) 0.065(3) 0.047(3) 0.052(3) 0.001(3) 0.002(3) -0.006(3) C(17) 0.070(4) 0.057(3) 0.055(3) 0.002(3) 0.014(3) 0.004(3) C(18) 0.069(4) 0.062(3) 0.053(3) -0.002(3) 0.013(3) -0.004(3) C(19) 0.066(3) 0.054(3) 0.055(3) 0.002(3) 0.015(3) 0.002(3) 0.015(3) 0.002(3)							
$\begin{array}{c} \mathbf{C(11)} & 0.069(3) & 0.051(3) & 0.048(3) & 0.003(3) & -0.001(3) & -0.004(3) \\ \mathbf{C(12)} & 0.053(3) & 0.058(3) & 0.051(3) & 0.001(3) & 0.006(3) & 0.004(3) \\ \mathbf{C(13)} & 0.056(3) & 0.087(4) & 0.053(3) & -0.014(3) & 0.006(3) & -0.011(3) \\ \mathbf{C(14)} & 0.066(3) & 0.070(4) & 0.053(3) & -0.004(3) & 0.008(3) & -0.009(3) \\ \mathbf{C(15)} & 0.067(3) & 0.057(3) & 0.054(3) & 0.001(3) & -0.002(3) & -0.006(3) \\ \mathbf{C(16)} & 0.065(3) & 0.047(3) & 0.052(3) & 0.000(3) & 0.002(3) & 0.004(3) \\ \mathbf{C(17)} & 0.070(4) & 0.057(3) & 0.056(3) & 0.002(3) & 0.014(3) & 0.004(3) \\ \mathbf{C(18)} & 0.069(4) & 0.062(3) & 0.053(3) & -0.005(3) & 0.013(3) & -0.008(3) \\ \mathbf{C(19)} & 0.071(3) & 0.048(3) & 0.055(3) & 0.002(3) & 0.015(3) & 0.002(3) \\ \mathbf{C(20)} & 0.066(3) & 0.054(3) & 0.062(3) & -0.003(3) & -0.002(3) & 0.005(3) \\ \mathbf{C(21)} & 0.070(4) & 0.055(3) & 0.062(3) & -0.003(3) & -0.002(3) & 0.005(3) \\ \mathbf{C(22)} & 0.070(4) & 0.063(4) & 0.063(4) & -0.003(3) & -0.009(3) & -0.012(3) \\ \mathbf{C(22)} & 0.070(4) & 0.063(4) & 0.063(4) & -0.003(3) & 0.007(3) & 0.001(3) \\ \mathbf{C(23)} & 0.065(3) & 0.058(3) & 0.050(3) & 0.000(3) & 0.009(3) & -0.012(3) \\ \mathbf{C(24)} & 0.064(4) & 0.083(4) & 0.065(4) & -0.016(3) & 0.002(3) & -0.014(3) \\ \mathbf{C(25)} & 0.071(4) & 0.069(4) & 0.071(4) & -0.009(3) & 0.006(3) & -0.017(3) \\ \mathbf{C(26)} & 0.056(3) & 0.071(4) & 0.062(3) & -0.016(3) & 0.009(3) & 0.004(3) \\ \mathbf{C(27)} & 0.074(4) & 0.098(5) & 0.055(4) & -0.008(3) & 0.006(3) & -0.017(3) \\ \mathbf{C(29)} & 0.067(4) & 0.098(5) & 0.055(4) & -0.008(3) & 0.006(3) & -0.001(3) \\ \mathbf{C(29)} & 0.067(4) & 0.098(5) & 0.055(4) & -0.008(3) & 0.006(3) & -0.001(3) \\ \mathbf{C(31)} & 0.058(3) & 0.066(4) & 0.094(5) & 0.008(3) & 0.006(3) & -0.005(4) \\ \mathbf{C(35)} & 0.081(5) & 0.147(7) & 0.143(7) & -0.026(5) & 0.041(5) & -0.005(4) \\ \mathbf{C(35)} & 0.081(5) & 0.147(7) & 0.143(7) & -0.026(5) & 0.041(5) & -0.005(4) \\ \mathbf{C(35)} & 0.081(5) & 0.147(7) & 0.143(7) & -0.026(5) & 0.041(5) & -0.005(4) \\ \mathbf{C(35)} & 0.097(6) & 0.186(9) & 0.22(1) & -0.001(2) & 0.001(2) & -0.006(2) \\ \mathbf{N(1)} & 0.056(2) & 0.067(2) & 0.052(2) & -0.001(2) & 0.001(2) & -0.006(2) $							
C(12) 0.053(3) 0.058(3) 0.051(3) 0.001(3) 0.006(3) 0.004(3) C(13) 0.056(3) 0.087(4) 0.053(3) -0.014(3) 0.006(3) -0.011(3) C(14) 0.066(3) 0.070(4) 0.053(3) -0.004(3) 0.008(3) -0.009(3) C(15) 0.067(3) 0.057(3) 0.054(3) 0.001(3) -0.002(3) -0.006(3) C(16) 0.065(3) 0.047(3) 0.052(3) 0.000(3) 0.002(3) 0.004(3) C(17) 0.070(4) 0.057(3) 0.050(3) 0.002(3) 0.014(3) 0.004(3) C(18) 0.069(4) 0.062(3) 0.053(3) -0.005(3) 0.013(3) -0.008(3) C(19) 0.071(3) 0.048(3) 0.050(3) 0.002(3) 0.015(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.002(3) 0.005(3) 0.005(3) 0.002(3) 0.005(3)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
C(14) 0.066(3) 0.070(4) 0.053(3) -0.004(3) 0.008(3) -0.009(3) C(15) 0.067(3) 0.057(3) 0.054(3) 0.001(3) -0.002(3) -0.006(3) C(16) 0.065(3) 0.047(3) 0.052(3) 0.000(3) 0.002(3) 0.004(3) C(17) 0.070(4) 0.057(3) 0.050(3) 0.002(3) 0.0014(3) 0.004(3) C(18) 0.069(4) 0.062(3) 0.053(3) -0.005(3) 0.013(3) -0.008(3) C(19) 0.071(3) 0.048(3) 0.050(3) 0.002(3) 0.015(3) 0.002(3) C(20) 0.066(3) 0.054(3) 0.062(3) -0.003(3) -0.002(3) 0.005(3) 0.002(3) C(21) 0.070(4) 0.055(3) 0.062(3) -0.003(3) -0.002(3) 0.005(3) C(21) 0.070(4) 0.055(3) 0.062(3) 0.007(3) 0.009(3) -0.012(3) C(22) 0.070(4) 0.063(4) 0.063(4) -0.003(3) 0.007(3) 0.009(3) -0.012(3) C(23) 0.065(3) 0.058(3) 0.058(3) 0.050(3) 0.000(3) 0.009(3) -0.012(3) C(24) 0.064(4) 0.083(4) 0.065(4) -0.016(3) 0.009(3) -0.014(3) C(25) 0.071(4) 0.069(4) 0.071(4) -0.009(3) 0.009(3) -0.014(3) C(25) 0.071(4) 0.069(4) 0.071(4) -0.009(3) 0.009(3) -0.014(3) C(27) 0.074(4) 0.109(5) 0.046(3) -0.010(3) 0.009(3) -0.017(3) C(28) 0.070(4) 0.098(5) 0.055(4) -0.018(3) 0.006(3) -0.017(3) C(28) 0.070(4) 0.098(5) 0.055(4) -0.008(3) 0.006(3) -0.017(3) C(28) 0.070(4) 0.098(5) 0.055(4) -0.008(3) 0.006(3) -0.004(3) C(29) 0.067(4) 0.098(5) 0.055(4) -0.008(3) 0.006(3) -0.004(3) C(31) 0.058(3) 0.071(4) 0.074(4) 0.005(3) 0.006(3) -0.004(3) C(31) 0.058(3) 0.066(4) 0.094(5) 0.008(3) 0.006(3) -0.004(3) C(31) 0.058(3) 0.066(4) 0.097(4) 0.091(4) 0.091(4) 0.005(3) 0.005(3) -0.001(3) C(31) 0.058(3) 0.066(4) 0.097(4) 0.091(4) 0.007(4) 0.008(4) 0.005(3) 0.005(3) -0.001(3) C(34) 0.066(4) 0.092(5) 0.103(5) -0.008(4) 0.025(5) 0.041(5) -0.005(6) 0.097(6) 0.186(9) 0.22(1) -0.002(6) 0.058(7) -0.004(2) N(2) 0.076(3) 0.056(3) 0.056(3) 0.056(3) 0.056(3) 0.056(3) 0.056(3) 0.006(3) -0.003(3) 0.001(2) -0.004(2) N(2) 0.056(2) 0.067(2) 0.052(2) -0.001(2) 0.001(2) -0.006(2)							
C(15)							
C(16) 0.065(3) 0.047(3) 0.052(3) 0.000(3) 0.002(3) 0.004(3) C(17) 0.070(4) 0.057(3) 0.050(3) 0.002(3) 0.014(3) 0.004(3) C(18) 0.069(4) 0.062(3) 0.053(3) -0.005(3) 0.013(3) -0.008(3) C(19) 0.071(3) 0.048(3) 0.050(3) 0.002(3) 0.015(3) 0.002(3) C(20) 0.066(3) 0.054(3) 0.062(3) -0.003(3) -0.002(3) 0.005(3) C(21) 0.070(4) 0.055(3) 0.062(3) -0.007(3) 0.009(3) -0.012(3) C(22) 0.070(4) 0.063(4) 0.063(4) -0.003(3) 0.007(3) 0.001(3) C(23) 0.065(3) 0.058(3) 0.050(3) 0.000(3) 0.009(3) -0.012(3) C(24) 0.064(4) 0.083(4) 0.065(4) -0.016(3) 0.002(3) -0.014(3) C(25) 0.071(4) 0.069(4) 0.071(4) -0.009(3) 0.006(3) -0.017(3) C(26) 0.056(3) 0.071(4) 0.062(3) -0.010(3) 0.009(3) 0.004(3) C(27) 0.074(4) 0.109(5) 0.046(3) -0.023(4) 0.002(3) -0.017(3) C(28) 0.070(4) 0.098(5) 0.055(4) -0.008(3) 0.006(3) -0.017(3) C(29) 0.067(4) 0.098(5) 0.055(4) -0.008(3) 0.006(3) -0.004(3) C(29) 0.067(4) 0.080(4) 0.064(4) 0.005(3) 0.016(3) -0.004(3) C(31) 0.058(3) 0.071(4) 0.074(4) 0.002(3) 0.006(3) -0.004(3) C(31) 0.058(3) 0.066(4) 0.094(5) 0.008(3) 0.006(3) -0.004(3) C(33) 0.066(4) 0.067(4) 0.091(4) 0.002(3) 0.004(3) 0.006(3) C(31) 0.058(3) 0.066(4) 0.094(5) 0.008(3) 0.006(3) -0.005(3) C(33) 0.066(4) 0.067(4) 0.091(4) 0.004(3) 0.016(3) -0.005(3) C(35) 0.081(5) 0.147(7) 0.143(7) -0.026(5) 0.041(5) -0.005(6) N(1) 0.065(3) 0.056(3) 0.056(3) 0.005(2) -0.001(2) 0.001(2) -0.006(2)							
C(17) 0.070(4) 0.057(3) 0.050(3) 0.002(3) 0.014(3) 0.004(3) C(18) 0.069(4) 0.062(3) 0.053(3) -0.005(3) 0.013(3) -0.008(3) C(19) 0.071(3) 0.048(3) 0.050(3) 0.002(3) 0.015(3) 0.002(3) C(20) 0.066(3) 0.054(3) 0.062(3) -0.003(3) -0.002(3) 0.005(3) C(21) 0.070(4) 0.055(3) 0.062(3) 0.007(3) 0.009(3) -0.012(3) C(22) 0.070(4) 0.063(4) 0.063(4) -0.003(3) 0.007(3) 0.001(3) C(22) 0.070(4) 0.063(4) 0.063(4) -0.003(3) 0.007(3) 0.001(3) C(22) 0.070(4) 0.063(4) 0.063(4) -0.003(3) 0.007(3) 0.001(3) C(24) 0.064(4) 0.055(3) 0.000(3) 0.007(3) 0.001(3) C(24) 0.064(4) 0.065(4) -0.016(3) 0.002(3) -0.014(3) C(25) 0.071(4) 0.069(4) 0.071(4) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
C(18) 0.069(4) 0.062(3) 0.053(3) -0.005(3) 0.013(3) -0.008(3) C(19) 0.071(3) 0.048(3) 0.050(3) 0.002(3) 0.015(3) 0.002(3) C(20) 0.066(3) 0.054(3) 0.062(3) -0.003(3) -0.002(3) 0.005(3) C(21) 0.070(4) 0.055(3) 0.062(3) 0.007(3) 0.009(3) -0.012(3) C(22) 0.070(4) 0.063(4) 0.063(4) -0.003(3) 0.007(3) 0.001(3) C(23) 0.055(3) 0.058(3) 0.050(3) 0.000(3) 0.009(3) 0.001(3) C(23) 0.065(3) 0.058(3) 0.050(3) 0.000(3) 0.009(3) 0.004(3) C(24) 0.064(4) 0.083(4) 0.065(4) -0.016(3) 0.002(3) -0.014(3) C(25) 0.071(4) 0.069(4) 0.071(4) -0.009(3) 0.006(3) -0.017(3) C(26) 0.056(3) 0.071(4) 0.062(3) -0.010(3) 0.006(3) -0.017(3) C(27) 0.074(4)						• - •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- • •						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			• •				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
N(2) 0.070(3) 0.078(3) 0.060(3) -0.003(3) 0.017(2) 0.001(3) O(1) 0.056(2) 0.067(2) 0.052(2) -0.001(2) 0.001(2) -0.006(2)							
O(1) $0.056(2)$ $0.067(2)$ $0.052(2)$ $-0.001(2)$ $0.001(2)$ $-0.006(2)$							
O(2) 0.060(2) 0.114(3) 0.064(2) -0.009(2) 0.007(2) -0.004(2)							
	0(2)	0.060(2)	0.114(3/)	0.064(2)	-0.009(2)	0.007(2)	-0.004(2)

C11 (or C27-C28) bond trans to C9-O1 (or C26-O2) and on the opposite side of the molecule from the alkyl substituent indicating a semi-quinodal character. Both the benzylidene rings have the —N=CH— and —O—CH₂— bonds trans with respect to the 1,4 axes. However, the average bond lengths of the two benzylidene rings are 1.378 Å and 1.379 Å and that of the aniline ring is 1.391 Å. They agree well with the expected values.¹¹

The average C—C bond length in the chain parts is 1.509 Å and the average angle in the chain is 114.1°. Similar values are found in other mesogens. 12,13

The overall molecular conformation of BOCP may be described with respect to

FIGURE 1 Perspective view of BOCP molecule.

TABLE V
Bond distance of the non-hydrogen atoms (Å) with standard deviations in parenthesis

C(1)	-	C(2)	1.503(9)	C(18)	-	C(19)	1.378(7)
C(2)	-	C(3)	1.506(8)	C(19)	-	C(20)	1.411(7)
C(3)	-	C(4)	1.517(7)	C(19)	-	N(2)	1.409(7)
C(4)	-	C(5)	1.510(7)	C(20)	-	C(21)	1.384(7)
C(5)	-	C(6)	1.497(7)	C(22)		C(23)	1.462(7)
C(6)	-	C(7)	1.527(8)	C(22)	-	N(2)	1.258(7)
C(7)	-	C(8)	1.499(7)	C(23)	-	C(24)	1.383(8)
C(8)	-	0(1)	1.443(6)	C(23)	-	C(28)	1.388(7)
C(9)	-	C(10)	1.403(7)	C(24)	-	C(25)	1.378(8)
C(9)	-	C(14)	1.382(7)	C(25)	-	C(26)	1.372(7)
C(9)	_	0(1)	1.361(6)	C(26)	_	C(27)	1.404(8)
C(10)	-	C(11)	1.352(7)	C(26)	-	0(2)	1.371(6)
C(11)	-	C(12)	1.378(7)	C(27)	-	C(28)	1.353(8)
C(12)	-	C(13)	1.397(7)	C(29)	-	C(30)	1.516(7)
C(12)	_	C(15)	1.461(7)	C(29)	_	0(2)	1.433(7)
C(13)	-	C(14)	1.358(7)	C(30)	_	C(31)	1.524(8)
C(15)	_	N(1)	1.260(7)	C(31)	_	C(32)	1.497(8)
C(16)	_	C(17)	1.401(7)	C(32)	_	C(33)	1.519(8)
C(16)	-	C(21)	1.382(7)	C(33)	_	C(34)	1.511(8)
C(16)	_	N(1)	1.405(6)	C(34)	_	C(35)	1.51(1)
C(17)	-	C(18)	1.387(7)	C(35)	_	C(36)	1.49(1)
- , ,			· · ·				

various planar parts: plane (1) of the first benzylidene ring C9–C14, plane (2) of the aniline ring C16–C21, plane (3) of the second benzylidene ring C23–C28, planes of the groups C12–C15–N1–C16 (plane 4) and C19–N2–C22–C23 (plane 5), planes through the chain parts C1 to O1 (plane 6) and O2 to C36 (plane 7). Planes (1), (2), (3), (4) and (5) are planar within 0.01 Å and the chains are planar within 0.07 Å and 0.09 Å respectively. The interplanar angles between successive planes in the string 7-3-5-2-4-1-6 are $9,10,-23,20,-10,-6^{\circ}$ respectively. The overall appearance of the molecule is approximately planar because the larger angles have alternating signs. As a result the molecule is in its most extended conformation with a molecular length of 39.4 Å.

Molecular Packing in Relation to the Liquid Crystalline Phase

Crystal structure of BOCP projected in ab-plane is shown in Figure 2 and the projection ac-plane in Figure 3. The molecules are inclined to the ab-plane at an angle of about 25°, the aromatic core region being almost parallel to the ac-plane. The molecules as a whole are almost parallel to the a-axis. This parallel imbricated mode of packing in the crystal gives rise to a nematic phase on melting.

All inter-molecular contact distances less than 3.8 Å involving non-hydrogen atoms are listed in Table VII. It is found that there are non-bonded interactions between molecules related by centers of inversion and molecules translated along c-axis. In this region two inter-molecular Cl-C distances are equal to the sum of their van der Waals' radii. Such non-bonded contacts also exist between molecules related by glide planes. Crystal structure of BOCP may, therefore, be described as molecules related by centers of inversion form layers in the ac-plane and these layers are stacked along the b-axis. Within the layers molecules are parallel and tilted to the ab-plane and neighbouring layers are related by a glide plane.

That the inter-layer interactions also exist in the nematic phase is revealed by

TABLE VI

Bond angles of the non-hydrogen atoms with standard deviations in parentheses

		deviations	s in pair	chilicaca	
C(1)	_	C(2)	_	C(3)	111.7(5)
C(2)		C(2)	_	C(4)	115.6(4)
C(3)	_	C(4)	_	C(5)	112.7(4)
C(4)	_	C(5)	_	C(6)	117.1(4)
C(5)	_	C(6)	-	C(7)	113.0(4)
C(6)		C(7)	_	C(8)	115.2(4)
C(7)	_	C(8)	_	0(1)	106.4(4)
C(10)	_	C(9)	_	C(14)	119.4(4)
C(10)	_	C(9)	-	0(1)	114.1(4)
C(14)	_	C(9)	_	0(1)	126.5(4)
C(9)	_	C(10)	_	C(11)	119.5(4)
C(10)	-	C(11)	_	C(12)	122.0(5)
C(11)	-	C(12)	-	C(13)	117.9(5)
C(11)	_	C(12)	_	C(15)	121.8(4)
C(13)	_	C(12)	_	C(15)	120.3(4)
C(12)	_	C(13)	-	C(14)	121.2(5)
C(9)	_	C(14)	_	C(13)	120.0(5)
C(12)	_	C(15)	_	N(1)	123.3(5)
C(17)	_	C(16)	_	C(21)	118.0(5)
C(17)	_	C(16)	_	N(1)	116.6(4)
C(21)	-	C(16)	_	N(1)	125.3(5)
C(16)	-	C(17)	-	C(18)	120.5(5)
C(17)	_	C(18)	_	C(19)	122.7(5)
C(18)	_	C(19)		C(20)	115.6(5)
C(18)	_	C(19)	_	N(2)	127.0(5)
C(20)	-	C(19)	_	N(2)	117.3(4)
C(19)	_	C(20)	_	C(21)	122.7(5)
C(16)	_	C(21)	_	C(20)	120.3(5)
C(23)	-	C(22)	_	N(2)	120.9(5)
C(22)	-	C(23)	_	C(24)	121.0(5)
C(22)	-	C(23)	_	C(28)	122.0(5)
C(24)	-	C(23)	_	C(28)	117.1(5)
C(23)	-	C(24)	_	C(25)	122.3(5)
C(24)	_	C(25)	-	C(26)	119.3(5)
C(25)	_	C(26)	_	C(27)	119.3(5)
C(25)	-	C(26)	_	0(2)	125.6(5)
C(27)	-	C(26)	-	0(2)	115.1(4)
C(26)	-	C(27)	-	C(28)	120.0(5)
C(23)	-	C(28)	-	C(27)	121.9(5)
C(30)	-	C(29)	-	0(2)	106.3(4)
C(29)	_	C(30)	_	C(31)	112.5(4)
C(30)	-	C(31)	-	C(32)	113,4(5)
C(31)	-	C(32)	-	C(33)	115.0(5)
C(32)	_	C(33)	-	C(34)	115.2(5)
C(33)	_	C(34)	-	C(35)	113.6(5)
C(34)	_	C(35)	_	C(36)	113.9(7)
C(15)	-	N(1)	_	C(16)	122.3(4)
C(19)	-	N(2)	-	C(22)	120.5(4)
C(8)	_	0(1)		C(9)	116.3(3)
C(26)	-	0(2)	_	C(29)	118.3(4)

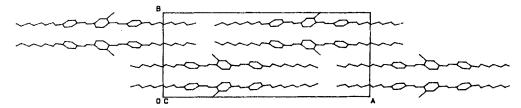


FIGURE 2 Crystal structure of BOCP in ab-plane.

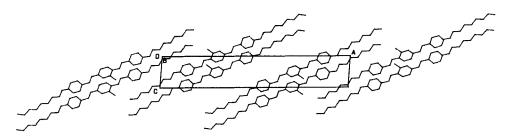


FIGURE 3 Crystal structure of BOCP in ac-plane.

TABLE VII

Intermolecular contact distances less then 3.8 Å involving non-hydrogen atoms only

Cl-C1ª	3.714	Cl-C2ª	3.760	Cl-C22b	3.500
Cl-C23 ^b	3.796	Cl-C24 ^b	3.799	Cl-C36 ^f	3.500
C4-C21°	3.718	C8-C13 ^c	3.784	C8-C14 ^c	3.784
C9-C10d	3.542	C9-C11 ^d	3.783	C9-C11 ^e	3.783
C10-O1 ^e	3.575	C10-C9 ^e	3.542	C14-O1 ^c	3.690
C16-C17 ^d	3.627	C16-C17e	3.627	C16-C18 ^d	3.776
C16-C18 ^c	3.707	C17-N1°	3.692	C17-C18 ^d	3.707
C17-C18°	3.707	C23-C24 ^d	3.645	C23-C24°	3.645

None:
$$x, y, z$$
; a: $1 - x, -y, -z$; b: $x, y, z - 1$; c: $1 - x, -y, 1 - z$; d: $x, 1/2 - y, 1/2 + z - 1$; e: $x, 1/2 - y, 1/2 + z$; f: $-x, -y, 3 - z$.

the following fact. In the x-ray diffraction photograph of the cybotactic nematic phase an equatorial diffraction ring appears⁴ at an angle of about 5°, apart from the ring which usually arises due to inter-molecular interactions (Figure 4). In the crystal structure the distance between two chlorine atoms of molecules related by glide symmetry is on the average 8 Å. An interaction between chlorine atoms of 8 Å separation corresponds to diffraction ring at about 5° for the cybotactic nematic phase. This additional diffraction ring in the equatorial section does not appear in the diffraction photograph of the cybotactic nematic phase of OOBPD¹⁴ since no chlorine atoms are present in these molecules which are otherwise the same as BOCP. Existence of this type of inter-layer interactions might be responsible for the occurrence of cybotactic nematic phase. Any definite conclusion can be made when crystal structures of other members of the series are determined.

Another interesting point to note is that the melting (143°C) and clearing point (231°C) of OOBPD is much higher than that of BOCP. Moreover it exhibits four

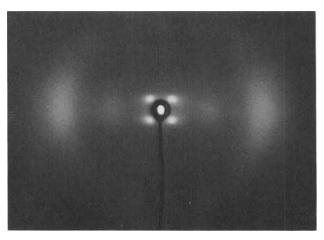


FIGURE 4 X-ray diffraction photograph of aligned BOCP sample in cybotactic nematic phase (83°C).

smectic phases. Stronger inter-molecular interactions in the aromatic region of the molecules in absence of the spacer chlorine atom and more efficient packing of the end chains might well be responsible for this.

Acknowledgments

P.M. and S.P. are thankful to UGC for financial assistance. We thank Dr. Mary Neubert of Kent State University, USA for supplying the sample.

References

- 1. A. de Vries, Mol. Cryst. Lig. Cryst., 10, 31 (1970).
- 2. V. M. Sethna, A. de Vries and N. Spielberg, Mol. Cryst. Liq. Cryst., 62, 141 (1980).
- 3. L. V. Azaroff and C. A. Schuman, Mol. Cryst. Liq. Cryst., 122, 309 (1985).
- 4. B. Jha, S. Paul, R. Paul and P. Mandal, Phase Trans., 15, 39 (1989).
- R. F. Bryan, Proceedings of the 14th. International Union of Crystallography Congress, Perth, Australia (1987).
- 6. Yao Jia-Xing, Zheng Chao-de, Quian Jin-Zi, Han Fu-Son, Gu Yuan-Zin and Fan Hai-Fu, SAPI: A Computer program for automatic solution of crystal structures from X-ray data, Institute of Physics, Academia Sinica, Beijing (1985).
- 7. R. F. Stewart, E. R. Davidson and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
- 8. D. T. Cromer and J. T. Waber, Acta. Cryst., 18, 104 (1965).
- 9. J. M. Stewart, The X-Ray Program System-76, University of Maryland, College Park.
- 10. R. F. Bryan and P. G. Forcier, Mol. Cryst. Liq. Cryst., 60, 133 (1980) and references therein.
- 11. International Tables for X-ray Crystallography, Vol. III, Kynoch Press, Birmingham (1962).
- 12. P. Mandal and S. Paul, Mol. Cryst. Liq. Cryst., 131, 223 (1985).
- 13. P. Mandal, S. Paul, H. Schenk and K. Goubitz, Mol. Cryst. Liq. Cryst., 135, 35 (1986).
- 14. P. Mandal, R. Paul and S. Paul, Mol. Cryst. Liq. Cryst., 131, 299 (1985).